skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Alexander, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. STEM-based University Pathway Encouraging Relationships with Chicago High schools in Automation, Robotics and Green Energy (SUPERCHARGE) is an NSF-sponsored project where university faculty and undergraduates from Illinois State University have designed informal, after-school engineering-related activities focusing on robotics, green energy, and automation. An emphasis is placed on activities and partnerships that promote knowledge, engagement, and interest in STEM fields in underserved schools and communities. This resource exchange presents activities from the final unit of the program's first year. In this project, high school students will build and experiment with a smart wireless weather station and indoor climate console with the goal of collecting and analyzing data to learn about the climate in their community while fostering STEM skills and interest in college and career pathways. 
    more » « less
  2. STEM-based University Pathway Encouraging Relationships with Chicago High schools in Automation, Robotics and Green Energy (SUPERCHARGE) is an NSF-sponsored project where university faculty and undergraduates from Illinois State University have designed informal, after-school engineering-related activities focusing on robotics, green energy, and automation. An emphasis is placed on activities and partnerships that promote knowledge, engagement, and interest in STEM fields in underserved schools and communities. This resource exchange presents activities from the final unit of the program's first year. In this project, high school students will build and experiment with a smart wireless weather station and indoor climate console with the goal of collecting and analyzing data to learn about the climate in their community while fostering STEM skills and interest in college and career pathways. 
    more » « less
  3. Abstract Marine heatwaves (MHWs)—extremely warm, persistent sea surface temperature (SST) anomalies causing substantial ecological and economic consequences—have increased worldwide in recent decades. Concurrent increases in global temperatures suggest that climate change impacted MHW occurrences, beyond random changes arising from natural internal variability. Moreover, the long-term SST warming trend was not constant but instead had more rapid warming in recent decades. Here we show that this nonlinear trend can—on its own—appear to increase SST variance and hence MHW frequency. Using a Linear Inverse Model to separate climate change contributions to SST means and internal variability, both in observations and CMIP6 historical simulations, we find that most MHW increases resulted from regional mean climate trends that alone increased the probability of SSTs exceeding a MHW threshold. Our results suggest the need to carefully attribute global warming-induced changes in climate extremes, which may not always reflect underlying changes in variability. 
    more » « less
  4. The Gulf of Maine (GoM) is currently experiencing its warmest period in the instrumental record. Two high-resolution numerical ocean models were used to downscale global climate projections to produce four estimates of ocean physical properties in the GoM in 2050 for the “business as usual” carbon emission scenario. All simulations project increases in the GoM mean sea surface temperature (of 1.1 °C–2.4 °C) and bottom temperature (of 1.5 °C–2.1 °C). In terms of mean vertical structure, all simulations project temperature increases throughout the water column (surface-to-bottom changes of 0.2 °C–0.5 °C). The GoM volume-averaged changes in temperature range from 1.5 °C to 2.3 °C. Translated to rates, the sea surface temperature projections are all greater than the observed 100-year rate, with two projections below and two above the observed 1982–2013 rate. Sea surface salinity changes are more variable, with three of four simulations projecting decreases. Bottom salinity changes vary spatially and between projections, with three simulations projecting varying increases in deeper waters but decreases in shallower zones and one simulation projecting a salinity increase in all bottom waters. In terms of mean vertical structure, salinity structure varies, with two simulations projecting surface decreases that switch sign with depth and two projecting increases throughout the (subsurface) water column. Three simulations show a difference between coastal and deeper waters whereby the coastal zone is projected to be systematically fresher than deeper waters, by as much as 0.2 g kg–1. Stratification, 50 m to surface, is projected to increase in all simulations, with rates ranging from 0.003 to 0.006 kg m–4 century–1 which are lower than the observed change on the Scotian Shelf. The results from these simulations can be used to assess potential acidification and ecosystem changes in the GoM. 
    more » « less
  5. null (Ed.)